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A synchronous vibration eliminator applied to an object moving in a plane is investigated.
The equation of motion of a system, which consists of a rigid object and several free rotating
vibrators placed on this object, are introduced. Necessary conditions are found under which
vibrators, moving synchronously with a force acting on an object, can eliminate object
vibration. Computer simulation of an object and vibrators behaviour is done. Some
time-runs of object vibrations and co-ordinates of vibrators positioning are shown. It was
proven that in reality, elimination of vibration occurrence and vibrator movements stabilize
in such a way that they move with constant velocities and phases. Simpli"ed solutions of
equation describing object movements were found, and then vibrator forces that induced
vibrator movements were de"ned. It was found on which parameters these forces depend
and how they change in relation to vibrator positions. The zero points of these forces were
obtained and these points are the vibrators equilibrium positions. It was proven that by
ful"lling certain conditions such positions of vibrators give full reduction of an object's
vibration. ( 2000 Academic Press
1. INTRODUCTION

Vibrations are dangerous for machines and their work. They decrease the working time,
lower the quality of executed operations and at the same time, are harmful for service
personnel or for people in the vicinity.

To decrease harmful vibrations we try to eliminate their causes "rst, for example, by
balancing rotating elements. If it is not possible to eliminate these forces, then we try to
decrease their e!ects, for example, by placing periodical forces on a larger surface of an
elastic system or by increasing their acting time. It is possible to decrease the e!ects of
dynamic loads by o!setting resonance frequencies of a system according to the frequency of
the force applied [1].

Many methods of elimination or damping of vibrations in mechanical systems are known.
The most popular are passive methods which are simple and in many cases give positive
results. Introduction of elastic or elastic-dissipative supports is a well-known method to
protect objects from vibrations [2}5]. The ratio of frequency of the excitation to the natural
frequency determines the degree of vibrato-isolation. To make it as large as possible, we use
extremely elastic elements in certain deformation ranges. Using a vibrato-isolator of
a constant reaction force [6, 7] gave an interesting solution to the problem of reducing noise
and vibration in pneumatic chisels to meet the strict standards for stroke tools.
*In memory of my wife Elzbieta
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A classical method to decrease machine vibrations is to attach an additional system.
Examples of such systems are dynamic Frahm eliminators for discrete systems [2}4] and
Stockbridge eliminators for continuous systems [8, 9]. For elimination of torsion vibrations
we use a Taylor pendulum and Salomon external and internal shafts [2, 3, 10]. Other kinds
of eliminators are striking eliminators in which free elements (metal spheres, shot, and sand)
move in a closed space under the in#uence of vibrations [3].

To eliminate vibrations of vehicles or ships, eliminators based on the gyroscope e!ect are
used [3, 4].

Advantages of passive elements are their simplicity, low production prices and high
infallibility, but they cannot ful"ll all requirements of modern construction.

Active methods in which automatic systems are applied are used more often. By
measuring vibrations or forces acting on an object and having an appropriate exciter with
an automatic steering system, it is possible to operate upon an object in a controlled way to
minimize vibrations. They are complicated and expensive; in addition they can be unstable
for certain parameters [3, 10].

The main source of vibrations in mechanical systems are unbalanced rotors. Methods of
automatic balancing of rotors are described in references [11}14].

In reference [15] the author proposed a new method of vibration elimination which is
based on a synchronized e!ect [16, 17]. An eliminator discussed in this paper reduces
vibrations of an object that is moving in one direction. Additional information can be found
in reference [18].

This paper has the aim of checking the possibility of application of such an eliminator for
vibration damping in a single plane. By knowing the properties of such an eliminator, it is
possible to eliminate vibrations of any con"guration.

2. DESCRIPTION OF A SYSTEM

A rigid object is suspended on many elastic and damping elements placed in a single
plane. Object vibrations are caused by replacement of the base on which the object is placed
and by forces that are acting directly upon it. Such forces reduced to a point give a main
vector and a main moment which acts in the plane being considered. It is necessary to
generate equal but opposite forces for elimination of object vibrations.

Rotating cylinders in which there are free elements such as spheres, rollers or shots are
placed on an object. They can be also inertia vibrators, this means, unbalanced rotors
placed freely on a rotating axis. Their aim is to generate appropriate forces and moments,
which are needed for the elimination of vibrations, and therefore, they have to be placed at
di!erent points on this object. Figure 1 shows a scheme of this system.

It was assumed that each axis of the cylinder rotates with constant velocity. Balls or
rollers move relative to the cylinders without slipping. They do not hit each other and they
do not detach from the race. Free element masses that will be called later as inertia vibrators
are much smaller in mass than the object. It is also assumed that base vibrations are
independent from object vibrations and that elastic and damping elements characteristics
are linear.

3. EQUATION OF MOVEMENT

The movement of an object is examined according to stationary reference system XA>.
A system of xOy co-ordinates is related to an object. A position of the O

i
-axis is described by



Figure 1. Object scheme with synchronous eliminators of vibrations.
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co-ordinates x
i
, y

i
, which are calculated according to a system related to an object.

Co-ordinate system x
i
O

i
y
i
is related to a rotating vibrator axis. The position of the vibrator

according to such a system is described by the angle co-ordinate a
i
. It is assumed that

initially each vibrator has the same angular velocity as the axis on which it is placed.
The direction of axis rotation and also vibrator rotation is described by the coe$cient s

i
.

It takes the value #1 or !1. If a vector of angular velocity x
i
is in agreement with the axis

Z of a dextrorotatory system Z>Z then s
i
"#1, otherwise s

i
"!1.

General co-ordinates for an object consist of co-ordinates x, y of a replacement of a point
O and the rotation angle c of an object around the axis Z and also the angle a

i
that describes

the position of a certain vibrator according to co-ordinates x
i
O

i
y
i
. Object vibrations are

assumed to be small.
The kinetic energy of a system is given by
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, (1)

where ¹
0

is the kinetic energy of the object and ¹
i
is the energy of the ith vibrator.
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If we do not take into consideration the force of gravity [15, 18], then the potential energy
stored in elastic elements can be described by the relation
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where k
xj

, k
yj

, kcj indicate sti!nesses of the jth spring in the direction of the axis of
a stationary co-ordinate system, x

j
, y

j
are component replacements of the end of the

elastic element at the point of contact with the object, K is the number of elastic
elements that support the object, and m

x
, m

y
, mc are the component replacements of

a base.
The components of the sti!ness of object suspension are described by relations
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The axis position of the ith vibrator in a system xOy can be described with the help of
a radius l

i
and angle o

i
that are related to axis co-ordinates x

i
, y

i
as
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(6)

A relation similar to equation (4) describes the energy dissipative function, but we replace
k
x
,2 , kc by n

x
,2, nc , the coe$cients of viscous damping, and replace the general

co-ordinates of the object by their "rst derivatives with respect to time.
Equations of motion are obtained from Lagrange's equations and for small object

vibrations they have the forms

MqK#nq5 #kq"km#nmQ #Q (t)#
N
+
i/1

Qi (t), (7)

IqK w"BqK!F, (8)

where q is the general co-ordinates matrix for the object, qw the general co-ordinates matrix
for vibrators, M the inertia matrix of the object, n the damping matrix for the object, k the
suspension sti!ness matrix for the object, m the base replacement matrix, Q the matrix of
force acting directly on the object, Qi the matrix of action on the object for the ith vibrator,
I the inertia matrix of vibrators, B the matrix of position coe$cients for vibrators, and F the
matrix of general frictional forces for vibrators.
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The matrices have the forms
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The resistance moment which acts against the movement of the ith vibrator can be shown
to be the sum of three components,

F
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, (12)

where F
iw

is the viscous resistance proportional to instantaneous vibrator velocity in
relation to a cylinder or an axis on which the vibrator is placed, F
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moment proportional to the reactive force of the race or axis on the vibrator, F
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The origin of the co-ordinate system xOy relative to the object can be chosen in such
a way that static moments S

x
,S

y
become zero. The origin of the co-ordinate systems

becomes the center of mass of a system consisting of an object and N vibrators. Then the
inertia matrix of an object M becomes diagonal. Additionally, the co-ordinate system xOy
can be rotated by an angle so that k

xy
"0.

By taking into account the fact that general co-ordinates a
i
(t) change slowly in time, we

can simplify the form of the matrix of a vibrator acting on an object [15, 18]
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Equations (7) describe small vibrations of an object in relation to a static balancing position.
This is a linear system of di!erential equations of second degree. Equations (8) describe
movements of certain vibrators in relation to an axis or a cylinder on which they are placed.
This is a strongly non-linear system of di!erential equations.
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4. CONDITIONS NECESSARY TO ELIMINATE VIBRATIONS

Before starting to analyze system movement equations (7) and (8), it is necessary to know
the conditions which should be ful"lled in the case where vibrators really could eliminate
object vibrations. Subsequent solutions of movement equations can be compared with
those conditions. It is obvious that solutions of equations (7) tend to zero only when the
right-hand sides of those equations become zero. Such a possibility takes place when
vibrators rotate with an absolute velocity appropriate to the frequency of the force. It is
assumed that the dynamic load is mono-harmonic. For poly-harmonic forces it would be
necessary to devote some vibrators for certain frequencies of force.

Therefore, the vibrator movements should be described by the relations

a
i
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i
) t#d

i
, (14)

where X is the circular frequency of dynamic load, u
i
the angular velocity of an axis or

a cylinder and d
i
the movement phase of a vibrator.

All forces have the same frequency, so
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The kinematic mono-harmonic excitation, which exists on the right-hand side of
equation (7), can be presented in the form
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Combining equation (15) with the force applied directly to the object, we get
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For movement of the vibrators as described by equation (14), the action on the object also
can be presented as
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The right-hand side of equation (7) acquires the form
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The equation (7) becomes autonomous for the phases of movement of the vibrators
d
1kt

,2, d
Nkt

and then

Qc (d1kt ,2, d
Nkt

)"0, Qs (d1kt,2, d
Nkt

)"0. (20)

From this we can conclude that for full reduction of object vibrations it is necessary to ful"ll
the six conditions (20).

Therefore, both things are important, not only the "nal arrangements described by
phases d

ikt
but also their positioning on the object and their directions of rotation.

For example, for the force acting only in the X-axis direction and for suspension of an
object in such a way that k

xc"k
yc"0, it is possible to apply at least two vibrators

(Figure 2(a)) rotating in opposite directions. Their static moments have to ful"ll the
condition
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The "nal arrangements of vibrators are described by angles

d
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"n.

The vibrator axes have to be positioned symmetrically with respect to the x-axis.
For kinematic excitation mc(t)"m

0c cosXt, we need at least two vibrators (Figure 2(b))
rotating in the same direction. Their static moments have to be the same,

m
1
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1
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2
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and the "nal phases must be

d
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"n/2, d
2ky

"!n/2.
Figure 2. Required setting of vibrators according to (a) excitation in X-axis direction, (b) moment excitation.
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If two kinematic excitations act in principal directions and they are matched in such
a way, that k

x
m
0x
"k

y
m
0y

with mutual phase replacements b
x
!b

y
"n/2, then the resultant

force acting on the object has a constant value and rotates with a constant velocity
according to the z-axis. In this case a single vibrator rotating in the same direction can
compensate for vibrations of the object. Its static moment has to have the value
mR"k

x
m
0x

/X2 and its "nal arrangement is d
1kt

"n (Figure 3(a)).
For the same forces but without mutual phase replacement b

x
!b

y
"0, a resultant force

has a constant direction and a changing value. It is necessary to use at least two vibrators
(Figure 3(b)) rotating in opposite directions. Their static moment should satisfy the
condition m

1
R

1
"m

2
R

2
"0)5k

x
m
0x

/X2, and the "nal phases d
1kt

"5n/4, d
2kt

"3n/4.
Figure 4(a) presents the positioning of vibrators that is needed in the case of vibration

coupling k
xcO0. Object vibrations can be compensated using four vibrators. Two of them

compensate for a force acting in the X direction and the other two generate a moment that
is in anti-phase to the moment k

xcm0x . The "nal phases are d
1kt

"d
2kt

"n, d
3kt

"n/2,
d
4kt

"!n/2.
Unfortunately, the examples of using one or two vibrators presented here are successful

only for certain parameters of excitation. For example, a change of base vibration
amplitude can unbalance the system. By using a larger number of vibrators it is possible to
avoid this inconvenience.

The case of a single force in the X direction that is compensated for by four vibrators of
the same static moment was shown in Figure 4(b). Vibrators are able to balance a force in
the range k@

x
m
0x

3S0, 4mRX2T.
The vibrators that are moving synchronously with force are able to eliminate object

vibrations if their static moment relating to the rotating axis, "nal phases d
ikt

, rotating
directions and vibrators positioning on an object, ful"ll conditions (20).

The relation, which describes their movements, has the form

a
i
(t)"(X!u) t#d

ikt
. (21)

5. NUMERICAL SOLUTIONS

Deliberations mentioned in the previous section had as their aim to check conditions that
should be ful"lled in order to completely eliminate the vibrations of an object under forces
Q(t) and kinematic excitation m(t). It is necessary to show that this happens in reality.
Figure 3. Required setting of vibrators according to (a) rotating constant excitation, (b) excitation with constant
direction.



Figure 4. Required setting of vibrators according to (a) vibrators positioning in the case of vibrations coupling,
(b) single excitation compensated by four vibrators.
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Therefore, it is important to solve equations (7, 8) and show that their solutions satisfy

limqw

t?0

(t)"(X!u
i
) t#d

kt
, limq

t?0

(t)"0. (22)

The equations of motion are very complicated and it is impossible to "nd their solutions
analytically. Therefore, it is necessary to use numerical methods. We introduce a parameter
q"Xt and solve the equation system (7, 8). Many data sets were tested for di!erent forces,
di!erent number of vibrators and their positioning on an object. Many excitation
frequencies were also tested. Examples of the results of these calculations are presented in
Figures 5}8.

First, Figures 5 and 6 show the kinematic excitation case matched in such a way that
amplitudes of both forces have the same value in both directions, k

x
m
ox
"k

:
m
oy

, and these
are the main directions of suspension, this means that k

xc"k
yc"0. Force phases are

matched in such a way (b
x
!b

y
"n/2) that the resultant force rotates in the same direction

as the Z-axis.
Figure 5 presents the behaviour of vibrators and the object when the force frequency is

the same as the initial vibrator velocity and is smaller than the natural frequency of the
object. In this case, vibrators, instead of eliminating vibration, cause their ampli"cation
when they are placed almost in phase with the excitation. On the other hand, for
X,u

i
'u

ox
,u

oy
, vibrators set in positions d

1kt
, d

2kt
cause vibrations of the object to

disappear.
Figure 6 presents the same excitation case but here its frequency is not in agreement with

the vibrator initial velocity and is larger than the object's natural frequency. In this case, the
vibrator tries to keep up with the force and becomes anti-phase to it and causes the object
vibration to disappear.

For excitation in the form of a pair of forces, it is necessary to apply at least two vibrators
rotating in the same direction (Figure 7). If their static moment ful"lls conditions (20) and
the force frequency is larger than the system's natural frequencies, the vibrators are able to
compensate vibrations. Their behaviour from the initial appearance of the force is presented
in Figure 7. Vibrators tend to "nal positions that are described by phases d

1kt
,

d
2kt

according to relation (20).
The graphs in Figure 8 refer to the case where excitation acts in a constant direction
* m

y
(t)"m

oy
cos Xt. Two similar vibrators placed symmetrically around the >-axis were

used. Only rolling resistance exists. We have vibration elimination. Vibrators placed
randomly at the beginning tend to acquire positions d

1kt
"!n/2, d

2kt
"n/2.



Figure 5. Behaviour of an object and vibrator for u"X(u
ox

,u
oy

, m
ox
"m

oy
"1 mm, b

x
"b

y
"n/2,

X"30 rad/s, m"0)22 kg, R"0)03 m; (a, b) component vibrations of object x(q) and y (q); (c) position of vibrator
a
1
(q).
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If coupling between certain directions exists, then during appearance of
kinematic excitation, vibrations in another direction, > for example, also appear. If
it is possible to ful"ll the conditions (20) and the force frequency and velocity of the
vibrators is greater than the natural frequencies of the object, then the vibrators eliminate
vibrations.



Figure 6. Behaviour of an object and vibrator for uOX'u
ox

, u
oy

m
ox
"m

oy
"1 mm, u!X"0)5 rad/s,

X/u
ox
"1)54, n

1
"0)2 kg/s (a, b) component vibrations of object x(q) and y (q), (c) position of vibrator a

1
.
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From computer simulations that were carried out, we can state that for di!erent forces the
vibrators are able to organize themselves in such a way that they can eliminate vibrations
when the forcing frequency is greater than the natural frequency of the object and the initial
di!erence between excitation frequency and initial vibrator's velocity is not too large. In
addition, if the motion resistance of vibrators is not too great, they move according to relation
(14) and the "nal phases of the positions are close to values that result from relation (20).



Figure 7. Vibration elimination with two vibrators for m
oc"0)003 rad, X"u

1
"u

2
"70 rad/s; (a, b, c)

component vibrations of object x (q), y(q), and c(q), (d) positions of vibrators a
1
, a

2
.
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Figure 8. Vibration elimination with two vibrators if m
oy
"1 mm, X"u

1
"u

2
"70 rad/s (a, b, c) component

vibrations of object x (tq), y(q), and c (q), (d) positions of vibrators a
1
, a

2
.
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6. ANALYSIS OF SYNCHRONOUS MOVEMENTS

Vibrations depend on stabilized movements of vibrators. The frequency of vibration of
the vibrator is much smaller than the frequency of vibration of the object. The movements
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of the vibrators are similar to the movements of a "xed inertial system subjected to a force
that acts like a step function. By taking into consideration the fact that accelerations of
vibrators are very small, their action on an object can be put in the form (13). With this
simpli"cation and the fact that equations (7) are linear with respect to the general
co-ordinates of the object, we can anticipate their solutions as a sum of "xed vibrations
from the forces acting on the object and the centrifugal forces of the vibrators:

q (t)"a
0

cos(Xt#b!u)#
N
+
i/1

a
i
cos(u

i
t#a

i
!u

i
). (23)

When the behaviour of the movements of the vibrators that are synchronous with the
vibrations of the base satis"es equations (14), then

q(t)"a
0

cos(Xt#b!u)#
N
+
i/1

a
i
cos(Xt#d

i
!u

i
), (24)

where aT
0
"[a

ox
, a

oy
, a

oc] are the amplitudes of object vibrations from the forces acting on
it, aT

i
"[a

ix
, a

iy
, a

ic] the amplitudes of object vibrations caused by the ith vibrator,
uT
i
"[u

x
, u

y
, uc!o

i
] the u

x
, u

y
, uc phase replacements of component vibrations

according to the excitation.
Vibration amplitudes depend on the values of the acting forces, on the ratio of frequency

of acting forces to the natural frequencies of the object and on its damping. Phases u depend
on the last two conditions. If directions x, y, and c are the main directions of elastic
suspension, then the relation between amplitude and phase replacements have a simple
form.

For example, vibrations in the direction of the y-axis and rotating vibrations have the
forms

a
oy
"

k@
x
m
ox

MJ(u2
oy
!X2)2#(n

y
X/M)2

, u
y
"arctan(n

y
X/(M(u2

oy
!X2))),

a
ic"

m
i
R

i
l
i
X2

I
z
J(u2

oc!X2)2#(ncX/I
z
)2

, uc"arctan(ncX/(I
z
(u2

oc!X2))).

The natural frequencies u
ox

, u
oy

, u
oc in this case describe the relation

u
ox
"Jk

x
/M, u

oy
"Jk

y
/M, u

oc"Jkc/Iz .

If the object vibrations are known, then it is possible to describe the force P@
i
acting on the

ith vibrator

P@
i
"m

i
R

i
[x( cos(Xt#d

i
)!s

i
yK sin(Xt#d

i
)!l

i
c( sin(Xt#d

i
!o

i
)]. (25)

After substituting relation (24) into equation (25), we can get a relation of generalized force
P@ depending on the external force, and all vibrators' positions and time. The behaviour of
the system depends mainly on the average value of this force [11}15]:

P"

1

¹ P
T

0

P@ dt. (26)
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After making the above calculation, we get
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a
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#uc)DH (27)

The relation mentioned above can be written in the form

P
i
"APiox

#
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+
j/1

P
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P
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where
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According to relation (28), the vibration force acting on the ith vibrator is a sum of
forces coming from component vibrations x (t), y(t), c (t) of the object. It is much greater
than the vibrating force of an object with one degree of freedom [15]. The vibrations
of the object result from the forces acting directly on it and from the actions of all
vibrators. Every vibrator acts on the ith vibrator, which is represented by a member P

ij
, and

the value of this force depends on mutual phase positions of these vibrators, d
i
!d

j
. The

vibration force component P
ic coming from rotational vibrations depends also on the

distance from an axis of this vibrator to the centre of mass of the system l
i
and the phase

angle o
i
according to the system xOy associated with an object. The ith vibrator acts on

itself with a force

P
ii
"!0)5m

i
R

i
[a

ix
sinu

x
#a

iy
sin u

y
#l

i
a
ic sinuc]. (29)

This moment is always opposite to the motion of the vibrator.
Figure 9(a) presents the change in the generalized vibration force as a function of the

position of a single vibrator and angle velocity from Figure 3(a). If the excitation frequency
is larger than both natural vibration frequencies u

ox
, u

oy
, the vibration force components

P
x
, P

y
are additive. At the point where d

kt
"$n, the force P has value zero and the

derivative of this force with respect to phase d is negative. This means that the vibrator
position is stable. For frequency X3(u

ox
, u

oy
), the force components P

ix
, P

iy
have opposite

signs and they are subtractive (assuming u
ox
(u

oy
). In this case the slope of the graph of

P(d) depends on whether X is closer to u
ox

or to u
oy

. Depending on which of those
components dominate we can state whether the vibrator compensates vibrations of the
object or increases them. Charts in Figure 9(b) represent an object with a large damping
e!ect, e

x
"e

y
"0)5. Increases in damping of the object result in a shift of the vibration force



Figure 9. Change of vibration moment in function of vibrator positioning for (a) object damping e
x
"e

y
"0)1,

(b) object damping e
x
"e

y
"0)5.
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in the direction of negative values of the P force and, additionally, it is shifted in the
horizontal direction of positive values d. For frequencies X(u

ox
, u

oy
, the characteristics of

P are qualitatively di!erent than for X'u
ox

, u
oy

.
If vibration force components P

x
, P

y
have opposite signs, the resultant force is small, the

time required for the vibrator to arrive in "nal position is greater, and the signi"cance of the
friction of the vibrator is greater. If movement friction is greater than the vibration forces,
then vibration will not be eliminated, as discussed earlier.

For an excitation with frequency X"0)5u
ox
"0)5u

oy
, the vibrator equilibrium position

is described by the angle !n/12 for object damping e
x
"e

y
"0)1 and by the angle !n/3

for e
x
"e

y
"0)5 (Figure 9):

P
i
(d

1kt
,2, d

Nkt
)"0, i"1,2, N. (30)

The system of equations describes the position of the vibrators d
ikt

for which all forces
P
i
become zero.
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After transformations the relation (27) of a vibration force can be written in the form
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Expressions in square brackets are of value zero because of equation (20) and, therefore, all
vibration forces are of value zero at the same time for vibrators placed in positions
d
1kt

,2, d
Nkt

described in Section 4. These are positions of equilibrium.
Therefore, for vibrators synchronously moving with excitation and phases d

1kt
,2, d

Nkt
we have

P(d
1kt

,2, d
Nkt

)"0, q(t, d
1kt

,2, d
Nkt

)" 0. (32)

It has been proved that vibrators can organize themselves in such a way with respect to
the object that they can move synchronously with the object vibrations and in addition,
they can generate forces that are opposed to the excitation. If the parameters of the
vibrators satisfy conditions (20) and the frequency of excitation is higher than the natural
frequencies of the object, then the vibrations could be completely eliminated. In practice, the
complete elimination of vibrations is limited by other factors that will be considered in
Part 2 of this paper.
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